Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38541477

RESUMO

The toughening modification of epoxy resin has received widespread attention. The addition of the second-phase resin has a good toughening effect on epoxy resin. In order to investigate the effect of the second-phase resin on the interphase of composites, in this work the interfacial properties of carbon fiber (CF)/epoxy resin with the second-phase resin structure were investigated. Methodologies including surface structure observation, chemical characteristics, surface energy of the CF, and micro-phase structure characterization of resin were tested, followed by the micro-interfacial performance of CF/epoxy composites before and after hygrothermal treatment. The results revealed that the sizing process has the positive effect of increasing the interfacial bonding properties of CF/epoxy. From the interfacial shear strength (IFSS) test, the introduction of the second phase in the resin reduced the interfacial bonding performance between the CF and epoxy. After the hygrothermal treatment, water molecules diffused along the interfacial paths between the two resins, which in turn created defects and consequently brought about a reduction in the IFSS.

2.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38544010

RESUMO

In the field of aerospace, large and heavy cabin segments present a significant challenge in assembling space engines. The substantial inertial force of cabin segments' mass often leads to unexpected motion during docking, resulting in segment collisions, making it challenging to ensure the accuracy and quality of engine segment docking. While traditional manual docking leverages workers' expertise, the intensity of the labor and low productivity are impractical for real-world applications. Human-robot collaboration can effectively integrate the advantages of humans and robots. Parallel robots, known for their high precision and load-bearing capacity, are extensively used in precision assembly under heavy load conditions. Therefore, human-parallel-robot collaboration is an excellent solution for such problems. In this paper, a framework is proposed that is easy to realize in production, using human-parallel-robot collaboration technology for cabin segment docking. A fractional-order variable damping admittance control and an inverse dynamics robust controller are proposed to enhance the robot's compliance, responsiveness, and trajectory tracking accuracy during collaborative assembly. This allows operators to dynamically adjust the robot's motion in real-time, counterbalancing inertial forces and preventing collisions between segments. Segment docking assembly experiments are performed using the Stewart platform in this study. The results show that the proposed method allows the robot to swiftly respond to interaction forces, maintaining compliance and stable motion accuracy even under unknown interaction forces.


Assuntos
Trabalho de Parto , Robótica , Humanos , Gravidez , Feminino , Movimento (Física) , Tecnologia
3.
Materials (Basel) ; 16(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512430

RESUMO

In the face of the difficulty in achieving high-quality integrated molding of longitudinally and transversely stiffened panels for helicopters by resin-matrix composite materials, we combine the prepreg process and the resin transfer molding (RTM) process to propose a hybrid resin transfer molding (HRTM) for composite stiffened panel structures. The HRTM process uses a mixture of prepreg and dry fabric to lay up a hybrid fiber preform, and involves injecting liquid resin technology. Using this process, a longitudinally and transversely stiffened panel structure is prepared, and the failure modes under compressive load are explored. The results show that at the injection temperature of the RTM resin, the prepreg resin dissolves slightly and has little effect on the viscosity of the RTM resin. Both resins have good miscibility at the curing temperature, which allows for the overall curing of the resin. A removable box core mold for the HRTM molding is designed, which makes it convenient for the mold to be removed after molding and is suitable for the overall molding of the composite stiffened panel. Ultrasonic C-scan results show that the internal quality of the composite laminates prepared using the HRTM process is good. A compression test proves that the composite stiffened panel undergoes sequential buckling deformation in different areas under compressive load, followed by localized debonding and delamination of the skin, and finally failure due to the fracture of the longitudinal reinforcement ribs on both sides. The compressive performance of the test specimen is in good agreement with the finite element simulation results. The verification results show that the HRTM process can achieve high-quality integrated molding of the composite longitudinally and transversely stiffened panel structure.

4.
Polymers (Basel) ; 15(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36771947

RESUMO

A polyimide (PI) molecular model was successfully constructed to compare the performance of PIs with different structures. In detail, the structure of the cross-linked PI resin, the prepolymer melt viscosity, and the glass-transition temperature (Tg) were investigated using molecular simulations. The results indicate that benzene ring and polyene-type cross-linked structures dominate the properties of the PIs. Moreover, the prepolymer melt viscosity simulations show that the 6FDA-APB and the ODPA-APB systems have a low viscosity. The results for the Tg and the distribution dihedral angle reveal that the key factor affecting bond flexibility may be the formation of a new dihedral angle after cross-linking, which affects the Tg. The above results provide an important reference for the design of PIs and have important value from the perspective of improving the efficiency of new product development.

5.
Polymers (Basel) ; 16(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201755

RESUMO

The nanocomposites with reversible cross-linking covalent bonds were prepared by reacting furfurylamine (FA)-modified diglycidyl ether of bisphenol A (DGEBA) and furfuryl-functionalized aniline trimer-modified graphene (TFAT-G) with bismaleimide (BMI) via the Diels-Alder (DA) reaction. The successful synthesis of the TFAT modifier is confirmed by nuclear magnetic resonance (NMR) hydrogen spectroscopy and IR spectroscopy tests. The structure and properties of TFAT-G epoxy nanocomposites are characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), tensile, and resistivity. The results show that TFAT-G was uniformly dispersed in the resin, and 1 wt% TFAT-G composites increased to 233% for tensile strength, 63% for elongation at break, 66% for modulus, and 7.8 °C for Tg. In addition, the addition of unmodified graphene degrades the mechanical properties of the composite. Overall, the graphene/self-healing resin nanocomposites have both good self-healing function and electrical conductivity by adding 1 wt% modified graphene; this allows for the maintenance of the original 83% strength and 89% electrical conductivity after one cycle of heating repair.

6.
Materials (Basel) ; 15(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744207

RESUMO

Modified phenylethynyl terminated polyimides (PIs) were successfully prepared by using neodymium oxide (Nd2O3) via high-speed stirring and ultrasonic dispersion methods. In addition, the structure and properties of the Nd2O3-modified imide oligomers as well as the thermo-oxidative stability of the modified polyimides (PI/Nd2O3 hybrid) and its modification mechanism were investigated in detail. The thermogravimetric analysis (TGA) results indicated that the 5% decomposition temperature (Td5%) of the PI/Nd2O3 hybrids improved from 557 °C to 575 °C, which was also verified by the TGA-IR tests. Meanwhile, the weight loss rate of the PI/Nd2O3 hybrids significantly decreased by 28% to 31% compared to that of pure PI under isothermal aging at 350 °C for 450 h when the added content of Nd2O3 was between 0.4 wt% and 1 wt%, showing outstanding thermo-oxidative stability. Moreover, the mechanism of the enhanced thermo-oxidative stability for the modified PIs was analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD).

7.
Materials (Basel) ; 15(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35591599

RESUMO

In this paper, interlayer toughening composites were prepared by the z-directional injection RTM process (z-RTM), which has the advantage of increasing the interlaminar toughness and shortening the filling time and completely impregnating the fibers. The nonwoven fabrics and dot matrix structure material were used as ex situ interlayer toughening agents. The effect of the interlayer toughening agent structure on the resin flow behavior during the z-RTM process was investigated. The macro-flowing and micro-infiltration behaviors of the resin inside the preforms were deduced. The permeability of the fabric preforms with different toughening agents was investigated. The results show that the introduction of the nonwoven structure toughening agent makes the macro flow slow, and the flow front more uniform. The toughening agent with a dot matrix structure promotes the resin macro flow in the preforms, and shortens the injection time. The z-directional permeability of the preform with a dot matrix structural toughening agent is one order of magnitude lower than that of the non-toughened preform, while being higher than the preform toughened by the nonwoven fabric preforms, which is helpful for the further applicability of the z-RTM process. Furthermore, the mode II interlaminar fracture toughness of composites was evaluated.

8.
Materials (Basel) ; 11(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558309

RESUMO

Introducing fire-retardant additives or building blocks into resins is a widely adopted method used for improving the fire retardancy of epoxy composites. However, the increase in viscosity and the presence of insoluble additives accompanied by resin modification remain challenges for resin transfer molding (RTM) processing. We developed a robust approach for fabricating self-extinguishing RTM composites using unmodified and flammable resins. To avoid the effects on resin fluidity and processing, we loaded the flame retardant into tackifiers instead of resins. We found that the halogen-free flame retardant, a microencapsulated red phosphorus (MRP) additive, was enriched on fabric surfaces, which endowed the composites with excellent fire retardancy. The composites showed a 79.2% increase in the limiting oxygen index, a 29.2% reduction in heat release during combustion, and could self-extinguish within two seconds after ignition. Almost no effect on the mechanical properties was observed. This approach is simple, inexpensive, and basically applicable to all resins for fabricating RTM composites. This approach adapts insoluble flame retardants to RTM processing. We envision that this approach could be extended to load other functions (radar absorbing, conductivity, etc.) into RTM composites, broadening the application of RTM processing in the field of advanced functional materials.

9.
Nanotechnology ; 20(41): 415702, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19755727

RESUMO

Preformed carbon nanotube thin films (10-20 microm), or buckypapers (BPs), consist of dense and entangled nanotube networks, which demonstrate high electrical conductivity and provide potential lightweight electromagnetic interference (EMI) solutions for composite structures. Nanocomposite laminates consisting of various proportions of single-walled and multi-walled carbon nanotubes, having different conductivity, and with different stacking structures, were studied. Single-layer BP composites showed shielding effectiveness (SE) of 20-60 dB, depending on the BP conductivity within a 2-18 GHz frequency range. The effects on EMI SE performance of composite laminate structures made with BPs of different conductivity values and epoxy or polyethylene insulating layer stacking sequences were studied. The results were also compared against the predictions from a modified EMI SE model. The predicted trends of SE value and frequency dependence were consistent with the experimental results, revealing that adjusting the number of BP layers and appropriate arrangement of the BP conducting layers and insulators can increase the EMI SE from 45 dB to close to 100 dB owing to the utilization of the double-shielding effect.


Assuntos
Eletroquímica/métodos , Campos Eletromagnéticos , Nanocompostos/química , Nanotecnologia/métodos , Nanotubos de Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...